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A similarity solution has been obtained for a radiation-driven shock wave. 
Radiation propagating radially inwards is completely absorbed in the shock 
layer of a spherical, expanding shock wave. For a strong shock wave and a 
constant power input a similarity solution is obtained. It is found that the radial 
position of the shock wave rs N tt .  The shock wave propagates as an overdriven 
detonation. The jump conditions and complete flow field are obtained. 

1. Introduction 
A similarity solution for the spherical blast wave has been given by Sedov 

(1946a, b )  and Taylor (1950b). An amount of energy E, is introduced instantane- 
ously at  the origin; subsequently a strong, spherical shock wave propagates into 
the surrounding gas. The shock wave decays in such a manner that the energy 
associated with the spherical flow field is equal to the initial energy E,. The 
similarity solution remains valid as long as the strong shock approximation is 
applicable across the shock wave. 

A similarity solution has also been obtained for a strong spherical detonation 
(Zeldovich 1942; Taylor 1950a). In this case the spherical detonation wave 
propagates at  a constant speed, the ChapmanJouguet speed. An important 
feature of this solution is the presence of a central region in which there is no flow. 

In  this paper a similarity solution is obtained for a spherical, radiation-driven 
shock wave. It is assumed that radiation propagates radially inwards with a con- 
stant power P. This radiation propagates through a gas of density po which is 
transparent. A strong spherical shock wave is generated at  the origin and the 
incident radiation is absorbed within the shock layer. The steady, one- 
dimensional propagation of this type of shock wave has been studied by Ramsden 
& Savic (1964) and Raizer (1965). The solution obtained by these authors is used 
as a jump condition in this paper. The behaviour of the wave is similar to that of 
a detonation, a Chapman-Jouguet condition is found. The speed of the spherical, 
radiation-driven shock wave is a function of time because the Aux density of 
radiation at  the shock front decreases with time. The jump conditions across the 
expanding shock wave are matched to a particle-isentropic flow behind the shock 
wave. The energy associated with this spherical flow field is equal to the energy 
that has been absorbed in the shock layer. The similarity solution remains valid 
as long as the strong shock approximation is appropriate across the shock layer. 
The problem is illustrated in figure 1. 



400 C .  R. Wilson and D. L. Turcotte 

A spherical, radiation-driven shock wave could be generated by a number of 
lasers focused on a common point so that the entire solid angle is uniformly filled 
with radiation as proposed by Daiber, Hertzberg & Wittliff (1966). The initial 
wave could be generated by the spontaneous breakdown of the gas or by the use 
of a small, energy absorbing particle. 

Incident 
radiation J 

- 
Spherical 
shock wave 

FIGURE 1. Illustration of the problem. 

2. Similarity analysis 
The problem we consider has complete spherical symmetry. The incident 

radiation is propagating radially inwards. The total flux of radiation at  any 
radius is P and is independent of time; the flux per unit area at  radius r is 
P/4nr2. A strong spherical shock wave is propagating outward and is located at 
r = r,. The incident radiation is completely absorbed within the shock layer. 
Reradiation from the shock layer is not considered. The gas into which the shock 
wave is propagating has a density po and is optically thin so that there is no inter- 
action with the incident radiation. The radiation does not penetrate through the 
shock layer which will be treated as a discontinuity; and the flow of the gas pro- 
cessed by the shock wave is particle isentropic. 

For the expansion of a strong shock wave the governing parameters are the 
power of the incident radiation P and the ambient density po. From dimensional 
analysis the radial position of the shock wave as a function of time is given by 
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and the velocity of the shock wave V, is given by 
P i  q - (%) t-Q. 

The dependences of the shock position and velocity on time are similar to those 
for a spherical blast wave except that the powers are + and - + instead of 5 and 
- *. 

3. Equations 
The shock layer including.the region of energy absorption will be treated as a 

discontinuity and the appropriate jump conditions are given. It is assumed that 
the strong shock approximation is applicable to the expanding shock wave. The 
energy absorbed per unit area and time in the shock layer is P/4nr2. The equations 
for conservation of mass, momentum, and energy across the shock Iayer are 

Po u s  = P1(U,-%), (3) 
Po u: = Plfu,-u112+Pl, (4) 

in a laboratory co-ordinate system. The subscript 1 denotes conditions immedi- 
ately downstream of the shock layer. The pressure terms on the left side of (4 )  
and (5 )  have been dropped because of the strong shock approximation. Equations 
(3) to (5) have been previously given by Raizer (1965). The resulting Hugoniot is 
similar to that for a detonation. A Chapman-Jouguet condition is found and it is 
concluded that a wave that is not overdriven will propagate at  the Chapman- 
Jouguet speed. 

There is no radiation behind the expanding shock wave and the flow is particIe 
isentropic. The governing equations for conservation of mass, momentum and 

energy are i a  9 +- - (rtppu) = 0, 
at r2ar 

where it is assumed that the ideal gas approximation is valid with y the ratio of 
specific heats. 

4. Similarity solution 

following dimensionless variables 
Following the general similarity analysis of Sedov (1959) we introduce the 
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The position of the shock wave is given by 
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where A, is the value of the dimensionless co-ordinate at the shock wave. And 
the velocity of the shock wave is obtained by taking the derivative of (lo), 

These results are consistent with the dimensional analysis given in (1) and (2). 
Substitution of the dimensionless variables into the equations for conservation 

of mass, momentum and energy across the shock layer gives 

$ = X1(*-K), (12) 

These equations are solved to give the dimensionless velocity, density, and 
reciprocal temperature immediately downstream of the shock layer in terms of 
the dimensionless position of the shock wave A,, 

These equations give the Hugoniot curve in terms of the parameter A,. 

in shock-fixed co-ordinates, that is 
The Chapman-Jouguet condition requires that the downstream flow be sonic 

Introducing the dimensionless variables the Chapman--Jouguet condition be- 
comes 

1 
(19) 2z. ;-Ka = 

If the Chapman-Jouguet condition is satisfied the dimeiisionless position of the 
shock wave is 
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and the corresponding values of the dimensionless variables behind the shock 
wave are 
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If the shock wave propagates at the Chapman-Jouguet speed these relations are 
valid, however, this remains to be shown. 
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FIGURE 2. Phase plane solution, the integral curve gives the solution from the shock layer 
(1) to the centre of the flow (2).  The Chapman-Jouguet point ( C J )  is shown for 
comparison. 

I n  order to analyze the flow behind the shock wave the non-dimensional 
variables are substituted into (6) to (8) with the result, after some manipulation, 

(y - 1) V (  V - 1) (P - g )  X - [2( V - 1) + 3 ( 7 -  1) V ]  [ P - g]'X 
d l n X  - - + 2(P- 1) + [4(Y - 1) /5Yl  
av [ v- g ]  [V(  V -  1) ( V  - 3 )  x + (4/57) - 3 v ]  

> 

(22) 
26-2 
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( 2 3 )  
1 - ( V -  *)2X 

V (  v - 1) ( V -  *) X + 14/57) - 3v 
-- - 
dlnh 
d V  

- _ -  dlnR 
d 111 h 
____ V (  V - 1)  ( V - $) X + (4/57) - 3 V  

( V -  *) [1 - ( V -  *)"X 
* (24) 

These equations are similar to those given by Sedov (1959) for the sphericalblast 
wave problem. 

An integral curve in the X, V phase plane can be obtained by integrating (22). 
Conditions immediately behind the shock layer must lie on the Hugoniot curve 
obtained from (15) to (17). For y = Q this Hugoniot in the X, V plane is given in 
figure 2. The Chapman-Jouguet point on the Hugoniot curve as obtained from 
(21) is also given in figure 2. The dimensionless position of a Chapman-Jouguet 

V 

0.160 
0.170 
0.180 
0.190 
0.200 
0.210 
0.220 
0.230 
0.240 
0.250 
0.260 
0.270 
0-276 

X 

0 
0.947 
1.747 
2.438 
3.047 
3.597 
4.105 
4.584 
5.047 
5.504 
5-963 
6.433 
6.722 

h 
0 

0.625 
0.641 
0.717 
0.775 
0.823 
0-866 
0.904 
0.940 
0.975 
1.010 
1.025 
1.067 

R 
0 

0.449 
0.588 
0.701 
0-805 
0.907 
1.013 
1.126 
1.249 
1.387 
1.544 
1.727 
1.852 

TABLE 1 

shock wave is A, = 1.055. The singularity in the phase plane corresponding to the 
centre of the sphere is at  X = 0 and V = A. This singularity is a saddle point and 
the integral curve leaving it is obtained by expanding ( 2 2 )  about the singularity. 
A numerical integration of ( 2 2 )  has been carried out to complete the integral 
curve to the intersection with the Hugoniot. This integral curve is shown in 
figure 2 and is tabulated in table 1. The intersection does not occur at  the 
Chapman-Jouguet point. The shock behaves like an overdriven detonation. The 
value of the dimensionless position of the shock wave is A, = 1.067. The inter- 
section gives V, = 0.276 and X ,  = 6.722.  

A physical explanation for the overdriven behaviour of the shock wave can be 
given. We have shown that the shock speed in this problem is not constant, see (2). 
In  order for the shock wave to slow down it is necessary that weak disturbances 
behind the shock wave be able to catch up with the shock wave. This would not 
be the case for a Chapman-Jouguet wave since the flow speed behind the wave 
would be sonic in shock fixed co-ordinates. For an overdriven wave the down- 
stream Mach number in shock fixed co-ordinates is subsonic and weak waves can 
reach the shock layer. 
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Using the integral solution of ( 2 2 ) ,  (23) is integrated numerically to give the 
dependence of the dimensionless co-ordinate h on the dimensionless velocity V .  
And then the dimensionless density R is obtained by a numerical integration 
of (24). The value of the dimensionless density just downstream of the shock 
layer is R, = 1.852. The results are tabulated in table 1. 

5. Results 
The position of the shock wave as a function of time is obtained by substituting 

the value of the dimensionless shock position, A,, as obtained from the numerical 
solution into (10) with the result 

rs = 1.067 (:)' tf 

t/to 

FIGURE 3. Dependence of shock position and velocity on time, to is 
a characteristic time. 

and the shock velocity as a function of time from (1 1) is 

These results are illustrated in figure 3 in terms of a reference time to. 
The dimensionless variables X ,  h and 12 have been obtained in terms of V .  

From this result it is straightforward to obtain the dimensional variables u, p, p 
and T. The radial dependence of the variables is illustrated in figure 4. The 
dependent variables are normalized using their values immediately downstream 
of the shock layer and the radial distance is normalized by the radial position of 
the shock wave. It is seen that the velocity and density go to zero a t  the centre 
while the temperature approaches infinity. The pressure remains finite at the 
centre. 
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FIGITRE 4. Deperiderice of velocity, density, pressure and tcrnpcrature on radius. 
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Note added in proof: The authors’ attention has been called to similar work 
by Champetier et al. (1968). 


